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1. Introduction
Low-altitude nearly-horizontal electromagnetic (EM)

propagation is strongly affected by the presence of
surface-based and elevated ducts. These ducts can be
formed by capping inversions in the marine atmospheric
boundary layer in subsidence-driven regimes such as that
experienced in the southern California bight. Such ducts
are also formed by thermal internal boundary layers that
can exist when warm continental air flows over a cooler
ocean, a regime that is common on the east coast of the
United States. There exist many ways of estimating the
duct structures or some of their aspects: in situ methods
(radiosondes and rocketsondes), using mesoscale models,
and by remote sensing, including inference of refractivity
parameters from GPS signals and from radar sea clutter.
However, no method exists to tie the information from
these different sources in near-real-time. The objective of
refractivity data assimilation is to develop that capability.

Modified refractivity is a convention used within the
EM propagation community which can be calculated as a
function of height (above the ground or sea surface) by

M(z) = 77.6(p + 4810 e/T)/T + 0.157z,

where p is the pressure (mb), e the water vapor pressure
(mb), T the temperature (K), and z the height (m). The
advantage of using M is that upward/downward refracting
regions are identified by positive/negative refractivity
gradients (dM/dz). In the presence of an inversion, the
refractivity profile is often characterized as being tri-linear
determined by three key variables: the base height h, the
intensity ∆M, and the thickness ∆z of the inversion. Here,
h and ∆M, have respectively strong negative and positive
correlations with signal strengths, an expected behavior as
they, from a ray perspective, determine the critical angle
for trapping energy within a duct. From a ray perspective,
∆z has no influence on the degree of trapping. More
rigorous modeling using a parabolic equation (PE) or
wave-guide model shows that it does � however, we might
consider it a second-order effect in comparison with h and
∆M. We suspect that these variables -- or some variation
or augmentation of the same -- can also account for
refractivity profiles associated with thermal internal
boundary layers. However, that has not yet been
demonstrated.
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Clearly, h, ∆M, and ∆z are nonlinear functions of the
primitive variables (pressure, temperature and humidity)
and they are not directly analyzed by the conventional
optimal interpolation or 3-dimensional variational
method (3dVAR). As a linear interpolator, the
conventional 3dVAR cannot correct phase errors in
M(z). Instead, it may produce spurious double inversion
layers when the observed inversion layer is entirely
above or below the background inversion layer
(provided by the model forecast). The vertical
correlation functions used in the conventional 3dVAR
are often too smooth and thus smear the inversion. The
inversion-related problems are notorious in boundary
layer data assimilation.  We assume those errors are
costly in the refractivity data assimilation problem
considered here.

The inversion-related vertical phase error problems
may be eliminated if the vertical phase error in the
background inversion can be corrected by stretching the
vertical coordinate along each grid column. The latter,
however, requires the two-dimensional field of the
inversion base height h be correctly estimated. To this
end, an automated algorithm is developed to detect
inversion layers and compute duct parameters from
radiosonde observations and model forecasts (the
details are omitted) and then a 2dVAR is developed to
"optimally interpolate" the duct parameters from
observation locations to the model grid. The error
statistics required by the 2dVAR are estimated from the
innovations (observations minus forecasts) obtained
from the Variability of Coastal Atmospheric
Refractivity (VOCAR) field experiment (Fig. 1).



                   

Fig. 1. VOCAR radiosonde stations used for innovation
analysis for the period from 8/23/93 to 9/04/93. The
innovations are given by the VOCAR observations
(every 4 hours) minus the forecasts (of 4, 8, 12 hours)
from the Navy Operational Regional Atmospheric
Prediction System (NORAPS with 20 km horizontal
resolution and 30 vertical levels, see Burk and
Thompson, 1997; Rogers et al. 1996)

2. Basic assumptions and error statistics
The base height innovation at the i-th observation

station is defined by hdi + hoi - hfi =  h"i - h'i, where
(�)o denotes the observation, (�)f the forecast, (�)" the
observation error, and (�)' the forecast error. All the
observations are assumed to be unbiased but have
random errors that are not correlated between different
stations and independent of forecast errors. Thus, the
forecast bias is given by the innovation bias:

<h'i> = -<hdi>, (1)

where <(�)> the ensemble mean or time mean (under the
ergodicity assumption). The unbiased part of the
forecast error is horizontally correlated. The auto-
correlation function is assumed to be Gaussian-elliptical
and is denoted by Rhh(rij, a, b, ß) where rij = xi - xj is
the horizontal vector distance between the two
correlation points i and j, x + (x, y), a and b are the
correlation length scales along the long and short axes
of the ellipse, respectively, and ß is the angle between
the x-coordinate and the long axis of the ellipse.

The normalized innovation is defined by Hdi + [hdi -
<hdi>]/σhd(xi) where

σhd(xi)2 = <(hdi - <hdi>)2> (2)

is the innovation variance. Based on the above
assumptions, the covariance of Hdi can be partitioned as
follows:

<HdiHdj>
= [1 - c(xi)c(xj)]δij + c(xi)c(xj)Rhh(rij, a, b, ß).  

(3)

where c(xi) = σhf(xi)/σhd(xi), and σhf(xi) = <(h'i -
<h'i>)2>1/2 is the forecast error standard deviation.
Note that <HdiHdi> =1, δii = 1, rii = 0, Rhh(rii, a, b, ß)
= 1, so when i = j the two terms on the righthand side of
(3) represent, respectively, the observation and forecast
error variances normalized by the innovation variance.
To reduce the number of unknowns, c(xi) is assumed to
be constant and this treatment is similar to the

innovation analyses of Hollingsworth and Lönnberg
(1986) and Xu et al (2001). The four parameters (a, b,
ß, c) are determined by least-square fitting of the
analytical expression on the righthand side of (3) to the
values of <HdiHdj> computed from the VOCAR
innovation data. The results are listed in Table 1. By
setting a = b and ß = 0, the correlation function reduces
to Gaussian-isotropic (see Fig. 2).

The above innovation method is similarly used to
estimate the error variances and auto-correlation
functions for the remaining two duct parameters. The
resulting parameter values for the ∆M-∆M auto-
correlation are listed in the second row of Table 1. The
∆z-∆z auto-correlation, however, is found to drop
rapidly to nearly zero as |rij| increases to about 70 km
and then fluctuate around zero as |rij| increases beyond
70 km. Since the horizontal correlation length scale for
the ∆z-∆z auto-correlation error is only about 50 km and
is shorter than the spacing between most of the VOCAR
stations, the 2dVAR analysis of ∆z becomes ineffective.
For the time being, we avoid the 2dVAR analysis of ∆z.
We note, however, that the vertical profile of refractivity
within the interfacial layer, in particular the presence of a
�sharp top� can have a significant affect on EM
propagation. At the same time, the ability to realistically
estimate the profile of refractivity within the interfacial
layer within the framework of the mesoscale model is
somewhat limited at present.  So we might expect to
return to the analysis of ∆z at some point in the future.
All the cross-correlations (h-∆M, h-∆z and ∆M-∆z) are
found to be insignificant for the VOCAR data, so only
an univariate version of 2dVAR is considered in section
4.

Table 1. Parameter values ______________
                    a (km)        b(km)          ß (o)           c_____

for h 400 290 56.0  0.66
    ∆M           220            173            37.1           0.64___
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Fig. 2. Least-square fitting of isotropic h-h auto-
correlation function (solid curve) to innovation
correlation data (dots). The resulting parameter values
are a = b = 333.5 km and c = 0.6663.



                   

3. Forecast bias and error standard deviation
After the forecast bias is computed from (1) at each

station, the bias field bh(x) is modeled by thin-plate
spline by minimizing the following costfunction

J = ∑(bh(xi) - <h'i>)2 + µ||∆Hbh(x)||, (4)
where ∆H is the horizontal Laplacian, µ is the weight for
the thin-plate penalty term (see Chapter 2 of Wahba
1990). If the bias computed from (1) at each station is
sufficiently accurate, then µ ∅  0 and the minimizer of
(4) is given by the solution of the following boundary
value problem:

∆H
2bh = 0  for x ≠ xi

bh = <h'i> and Hb = 0 at x = xi,
b(x) ∅ Σ <h'i>/N  for |x| ∅  ,

where H denotes the horizontal gradient and Σ the
summation from 1 to N (the total number of observation
sets). The estimated bias field is plotted in Fig. 3a.

Fig. 3. Base height forecast bias (a) and forecast error
standard deviation (b).

The above thin-plate spline model is also used to
estimate the forecast error standard deviation field
σhf(x) and the result is plotted in Fig. 3b. The bias field
and error standard deviation field for ∆M forecast are
modeled similarly and the details are omitted.

4. 2dVAR analysis
The 2dVAR analysis leads to the following vector

equation for the analysis of the inversion base height:

ha = (hf - b) + FHTQ-1[ho - H(hf - b)],

where hf and b are the forecast and forecast bias
(vectors in the model grid space), respectively, ho the
observation (vector in the observation space), H the
observation operator (transformation matrix from the
model grid space to observation space), and Q = HFHT

+ O. F and O are the forecast and observation error
covariance matrices, respectively, and they are
computed from the error variances and correlation
obtained in sections 2 and 3.

Although the VOCAR data are limited to 8 stations
(Fig. 1), the 2dVAR works well as shown by the
comparison between the forecast and analyzed base
height fields in Figs. 4a-b. The analyses are compared
with the forecasts and observations of h for the entire
VOCAR period at the San Clemente Island (Fig. 5a)
and Point Mugu (Fig. 5b). As shown, the 2dVAR is
effective in correcting the forecast bias and filtering
random observation errors, and this effectiveness is
seen not only in space but also in time although the
analysis is performed in space only). Similar



                   

effectiveness is seen for the analyses of ∆M in Figs. 6a-
b.

Radio propagation measurements can be related
nonlinearly, with some degree of ambiguity, to the duct
parameters (Rogers 1997). These measurements can be
assimilated together with the radiosonde observations
by upgrading the current 2dVAR. This problem is under
investigation.

Fig. 4. Base height (in m) at 20:00 UTC 9/2/1993 from
NORAPS forecast (a) and 2dVAR analysis (b).
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Fig. 5. Time series of forecast, observation and analysis
of h at (a) San Clemente Island and (b) Point Mugu.
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Fig. 6. As in Fig. 5 but for time series of ∆M.
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